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Abstract. Superquantile risk, also known as conditional value-at-risk (CVaR), is widely used as
a coherent measure of risk due to its improved properties over those of quantile risk (value-at-risk).
In this paper, we consider second-order superquantile/CVaR measures of risk, which represent further
“smoothing” by averaging the classical quantities. We also step further and examine the more general
“mixed” superquantile/CVaR measures of risk with fundamental importance in dual utility theory. We
establish representations of these mixed and second-order superquantile risk measures in terms of risk
profiles, risk envelopes, and risk identifiers. The expressions facilitate the development of dual meth-
ods for mixed and second-order superquantile risk minimization as well as superquantile regression, a
second-order version of quantile regression.
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1 Introduction

The question of how to assess and rank uncertain quantities represented by random variables takes center
stage in many areas of operations research, engineering, and economics. The axiomatic framework of
coherency laid out in [2] provides guidance for constructing measures of risk that quantify the “risk”
in a random variable. Conditional value-at-risk (CVaR) [17, 18], also called superquantile risk2, is a

1This material is based upon work supported in part by the U. S. Air Force Office of Scientific Research under grants
FA9550-11-1-0206 and F1ATAO1194GOO1.

2The quantity originally proposed under the name conditional value-at-risk is also called average value-at-risk and
expected shortfall. With the increasing number of applications beyond finance and the need for treating conditional
random variables, however, the name “superquantile risk” seems more appropriate.
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type of coherent risk measure having importance in its own right, but central also as building block
for all law-invariant coherent risk measures [9, 7, 13, 11, 26]. In particular, the weighted average of
superquantile risk measures across probability levels gives rise to mixed superquantile risk measures,
also called spectral risk measures [1] and Choquet representation of distortion acceptability functionals
[12], that are appealing to practitioners. In fact, such risk measures correspond to a class of utility
functions of dual utility theory [28]; see [12, 6, 24] for details. Properties of these and other “mixed”
risk measures are clarified further in the Mixing Theorem of [19].

In this paper, we are motivated by emerging applications of second-order superquantiles, especially
in risk-averse regression [16]. A second-order superquantile (or second-order CVaR) is the normalized
integral of superquantiles (CVaRs) with respect to the probability level. In that sense, second-order
superquantiles are particular instances of mixed superquantiles. As shown in [14, 15, 16] and summa-
rized below, a second-order superquantile of a random variable arises from a certain “smoothing” of
its distribution function such that quantiles of the smoothed distribution function coincide with the
superquantiles of the original distribution function. In the same manner as a superquantile risk (CVaR)
is more conservative and mathematically better behaved than the corresponding quantile risk (value-
at-risk), second-order superquantile risk (second-order CVaR) is more conservative and better behaved
than the corresponding superquantile (CVaR). (The higher-order CVaR introduced in [8] and studied
further in [5] is unrelated to our development.) A particular application of second-order superquantiles
is in the domain of generalized regression. We laid out in [16] a parallel methodology to that of quantile
regression, which instead of estimating conditional quantiles, estimates conditional superquantiles. The
resulting estimation problem is essentially a second-order superquantile minimization problem.

Although second-order superquantiles serve as a primary motivation, little additional complication
derives from considering the broader class of general mixed superquantile risk measures, so we proceed
in that setting. Properties of second-order superquantiles then follow as corollaries.

The contributions of the paper are as follows. We establish representations of mixed and second-
order superquantiles in terms of risk profiles by extending results in [20, 21]. We provide detail character-
ization of risk envelopes of mixed and second-order superquantile risk measures as well as corresponding
risk identifiers that furnish maximizing change-of-measure in dual representations of such risk measures.
These expressions facilitate the development of dual methods for mixed and second-order superquantile
risk minimization as well as for superquantile regression, the second-order version of quantile regression.

Although dualization of risk measures can be carried out for a variety of spaces of random variables
and paired dual spaces (see for example [25]), we here focus on random variables with finite second
moments. In addition to the fact that this choice results in a “balance” between the original space of
random variables and a paired dual space, which then can be selected to be the same space, random
variables with finite second moment are also guaranteed to have finite superquantiles for any probability
level less than 1 as demonstrated in [16]. Consequently, we are able to guarantee finiteness of second-
order superquantile risk measures along with a specific condition for finiteness of mixed superquantile
risk measures.

The remainder of the paper is organized as follows. Section 2 gives background. Section 3 presents
definitions of mixed and second-order superquantiles as well as basic properties. Section 4 provides
dual characterizations of mixed and second-order superquantiles. Section 5 discusses the application of
the preceding results in risk optimization and superquantile regression problems.
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2 Background

For a probability space (Ω,F ,P), we let

L2 = L2(Ω,F ,P) := {X : Ω → IR | X F-measurable, E[X2] <∞}

be the space of random variables with finite second moment, where we write integration with respect
to P using the standard notation E[X] =

∫
X(ω)dP(ω). We equip L2 with the standard norm

∥X∥2 := (E[X2])1/2.

In the following, we deal with classes of measures of risk defined on L2. Regularity [19] provides
fundamental properties for such risk measures. We recall that a measure of risk R : L2 → (−∞,∞] is
regular if it satisfies the following axioms:

R(X) = c for constant random variables X ≡ c,

R((1− τ)X + τX ′) ≤ (1− τ)R(X) + τR(X ′) for all X,X ′ ∈ L2 and τ ∈ (0, 1) (convexity),

{X ∈ L2 | R(X) ≤ c} is closed for all c ∈ IR (closedness),

R(X) > E[X] for nonconstant X ∈ L2 (averseness).

We say that a risk measure R is positively homogeneous if

R(τX) = τR(X) for τ > 0, X ∈ L2.

and monotonic if
R(X) ≤ R(Y ) whenever X(ω) ≤ Y (ω) for a.e. ω ∈ Ω.

We characterize the distribution of an X ∈ L2 by its right-continuous, nondecreasing cumulative
distribution function

FX(x) := P({ω ∈ Ω | X(ω) ≤ x}), x ∈ IR.

Equivalently, it can be characterized by the left-continuous, nondecreasing, finite-valued quantile func-
tion

GX(α) := min{x ∈ IR | FX(x) ≥ α}, α ∈ (0, 1),

or by the continuous, nondecreasing first-order superquantile function ḠX : [0, 1] → (−∞,∞], where

ḠX(α) :=
1

1− α

∫ 1

α
GX(β)dβ, α ∈ [0, 1), (1)

and ḠX(1) := supX (the essential supremum). We include the prefix “first-order” to distinguish the
superquantile function from the subsequent development of a second-order theory. Since GX : (0, 1) →
IR is discontinuous at most for a countable number of points in (0, 1), the integral is well-defined. We
observe that ḠX(0) = E[X] and for nonconstant X ∈ L2, ḠX is strictly increasing.

An alternative expression for ḠX(α), α ∈ [0, 1), is furnished by (see [18])

ḠX(α) =

∫ ∞

−∞
x dFα

X(x), with Fα
X(x) :=

{
FX(x)−α

1−α if FX(x) ≥ α

0 if FX(x) < α.
(2)
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The quantity ḠX(α) can therefore be interpreted as a conditional expectation of X given that X ≥
GX(α) whenever there is no probability atom at GX(α), i.e., P({ω ∈ Ω | X(ω) = GX(α)}) = 0.

An example of a regular measure of risk that is also positively homogeneous and monotonic is
the well-known superquantile/CVaR risk measure, defined next, which we here label “first-order” to
distinguish it from the second-order extensions of Section 3.

2.1 Definition (first-order superquantile risk measure) For a given α ∈ [0, 1), a measure of risk Rα :
L2 → (−∞,∞] of the form

Rα(X) := ḠX(α)

is called a first-order superquantile measure of risk.

Obviously, E[X] ≤ ḠX(α) ≤ supX and ḠX(α) > E[X] for nonconstant X unless α = 0. Moreover,
from [16, Proposition 1] we also know that for α < 1, ḠX(α) is bounded from above by an expression
involving the standard deviation

σ(X) :=
(
E
[
(X − E[X])2

])1/2
.

Combining these facts, we can state the following results.

2.2 Proposition For X ∈ L2 and α ∈ [0, 1),

E[X] ≤ ḠX(α) = Rα(X) ≤ min

{
E[X] +

σ(X)√
1− α

, supX

}
,

with the lower bound being strict for nonconstant X unless α = 0.

We end this section by recalling a consequence of the Fubini-Tonelli Theorem, which soon will be
put to use in Section 3, and adopt the following notation. For a set S with a topology, let BS be its
Borel sigma-algebra. We denote by m the Lebesgue measure defined on BS , S = IR or any subset of
IR. Let IR := IR∪{−∞,∞}. Given measurable spaces (X ,A) and (Y,B), a (A,B)-measurable function
f : X → Y is simply referred to as A-measurable when Y is topological and B is the sigma-algebra BY .

2.3 Proposition Suppose that (X ,A, µ) and (Y,B, ν) are sigma-finite measure spaces. If f : X ×Y →
IR is measurable with respect to the product sigma-algebra on X ×Y and g : X ×Y → IR is integrable
with respect to the product measure µ× ν, with f(x, y) ≥ g(x, y) for (µ× ν)-a.e. (x, y) ∈ X ×Y, then
the following hold:

(i) the function h1 =
∫
f(x, ·) dµ(x) is B-measurable,

(ii) the function h2 =
∫
f(·, y) dν(y) is A-measurable,

(iii) and ∫
f d(µ× ν) =

∫ [∫
f(x, y) dµ(x)

]
dν(y) =

∫ [∫
f(x, y) dν(y)

]
dµ(x).
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Proof. We recall that the integral of the sum of a nonnegative measurable function and an integrable
function equates the sum of the individual integrals under the usual rules for handling addition with
infinity. Then,

h1 =

∫
f(x, ·)dµ(x) =

∫
(f − g)(x, ·)dµ(x) +

∫
g(x, ·)dµ(x)

is B-measurable since both terms on the right-hand side are B-measurable by the Fubini-Tonelli The-
orem. A similar argument yields the conclusion for h2. The final assertion follows by applying the
Fubini-Tonelli Theorem to f − g and g, and the above rule about interchange of summation and inte-
gration.

3 Mixed and Second-Order Superquantile/CVaR Risk

We start with a parallel to (1) and define the second-order superquantile function ¯̄GX : [0, 1) → (−∞,∞]
as

¯̄GX(α) :=
1

1− α

∫ 1

α
ḠX(β)dβ, α ∈ [0, 1). (3)

Analogously to Definition 2.1, this function generates the second-order superquantile risk measures as
defined next.

3.1 Definition (second-order superquantile risk measure) For a given α ∈ [0, 1), a measure of risk
R̄α : L2 → (−∞,∞] of the form

R̄α(X) := ¯̄GX(α)

is called a second-order superquantile measure of risk.

As we establish shortly, R̄α is a regular measure of risk.
A motivation for considering such risk measures is furnished by the natural extension of the idea

behind passing from quantiles to first-order superquantiles: to obtain better behaved and more conser-
vative expressions for risk. Specifically, starting from a random variable X with cumulative distribution
function FX , the transformation

X̄ = ḠX(FX(X))

constructs a new random variable X̄ whose quantiles coincide with the first-order superquantiles of X,
i.e., GX̄(α) = ḠX(α) for all α ∈ (0, 1). In view of the definition of first-order superquantiles in (1), we
then find that

Rα(X̄) = ḠX̄(α) =
1

1− α

∫ 1

α
GX̄(β)dβ =

1

1− α

∫ 1

α
ḠX(β)dβ = R̄α(X).

Clearly, R̄α is more conservative than Rα and represents further smoothing (averaging) of the corre-
sponding quantile function beyond what is already achieved by a first-order superquantile. Additional
motivation derives from the fact that R̄α represents particular preferences of a decision maker according
to dual utility theory (see [28, 12, 6, 24]) as well as the connections with superquantile regression [16]
revealed in Section 4.
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The first- and second-order superquantile risk measures fit into a larger picture of mixed superquan-
tile risk measures defined in terms of weighting of first-order superquantiles at different probability levels.
The general mixed superquantile risk measures are also of importance in their own right due to their
coherency and close connection with dual utility theory; see the discussion in Section 1. Specifically, we
let λ be a probability measure on ([0, 1),B[0,1)), representing a “weighting” of a collection of first-order
superquantiles ḠX(α), α ∈ [0, 1). We refer to λ as a weighting measure.

3.2 Definition (mixed superquantile risk measure) For a weighting measure λ, a measure of risk
R : L2 → (−∞,∞] of the form

R(X) :=

∫ 1

0
ḠX(α) dλ(α) (4)

is called a mixed superquantile measure of risk3.

If λ is concentrated on a finite number of points in [0, 1), say α1, α2, ..., αk, then simply R(X) =
λ(α1)ḠX(α1)+ ...+λ(αk)ḠX(αk). A first-order superquantile risk measure is realized by setting k = 1.
The second-order superquantile measure of risk R̄α is formed by the weighting measure λ = λ̄α, with
λ̄α(S) := m(S ∩ (α, 1))/(1−α) for any S ∈ B[0,1). (Here, m is the Lebesgue measure.) In general, since
λ is defined on B[0,1), we exclude the possibility of a weighting measure that places a positive weight at
α = 1 because that case simply yields R(X) = ∞ when supX = ∞, which is better treated separately.

For technical reasons, we exclusively deal with the completion of ([0, 1),B[0,1), λ), which we, with a
slight abuse of notation, denote by ([0, 1), B̄[0,1), λ).

We are then ready to give the basic properties of a mixed superquantile risk measure. The following
result is a slight extension of [20, 21] by dealing with a relaxed condition for finiteness and the point
β = 0 explicitly. Also, parts of the proof are new.

3.3 Theorem (mixed superquantile properties) A mixed superquantile risk measure R, see (4), is
well-defined, monotonic and positively homogeneous. It is regular if λ({0}) < 1, but lacking averseness
if λ({0}) = 1. Specifically,

R(X) ≥ E[X] for all X ∈ L2 and R(X) > E[X] for nonconstant X unless λ({0}) = 1.

It is finite on L2 whenever the weighting measure λ satisfies∫ 1

0

1√
1− β

dλ(β) <∞

and, regardless of the weighting measure, has R(X) <∞ whenever supX <∞.
It has the alternative expression

R(X) =

∫ 1

0
GX(β)φ(β)dβ, where φ(β) :=

∫
0≤α<β

1

1− α
dλ(α), β ∈ [0, 1].

The risk profile function φ is right-continuous and nondecreasing on [0, 1] with φ(0) = 0 and satisfies∫ 1
0 (1 − α)dφ(α) = 1. Conversely, any φ with these properties arises from a unique weighting measure
λ given by dλ(α) = (1− α)dφ(α).

3Also called a spectral measure of risk [1] and Choquet representation of distortion acceptability functionals [12].
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Proof. For every X ∈ L2, ḠX is continuous and finite on [0, 1) and therefore B̄[0,1)-measurable. More-
over, ḠX ≥ E[X] and therefore R(X) ≥ E[X] > −∞. Consequently, R is well-defined with values in
[E[X],∞]. Its regularity and positive homogeneity follow directly from those of Rα; see [19]. Since ḠX

is strictly increasing on [0, 1) for nonconstant X, we have that if λ({0}) < 1, then

R(X) = E[X]λ({0}) +
∫
1>β>0

ḠX(β) dλ(β) > E[X]λ({0}) + E[X](1− λ({0}) = E[X]

and the strict lower bound follows. From Proposition 2.2,

R(X) ≤
∫ 1

0
E[X] +

σ(X)√
1− β

dλ(β) = E[X] + σ(X)

∫ 1

0

1√
1− β

dλ(β) <∞

under the stated assumption, which establishes the corresponding finiteness on L2. In the case of
supX <∞, finiteness of R(X) follows trivially.

We next consider the alternative expression. By definition,

R(X) =

∫ 1

0

[∫ 1

0
GX(β)ψ(α, β)dβ

]
dλ(α), (5)

with ψ(α, β) = 1
1−α if 0 ≤ α < β < 1 and ψ(α, β) = 0 otherwise. We equip [0, 1)×(0, 1) with the product

measure λ×m defined on the product sigma-algebra B̄[0,1)⊗B(0,1). It is obvious that ψ : [0, 1)×(0, 1) →
IR is (B̄[0,1)⊗B(0,1))-measurable and likewise GX , viewed as a function on [0, 1)× (0, 1) that is constant
in its first argument, due its monotonicity. Consequently, the function (α, β) 7→ GX(β)ψ(α, β) is
measurable in the same sense. Then, we look toward the interchange of integration order in (5).

We consider three cases. (i) Suppose that X ≥ 0 a.e. Then, GX ≥ 0 and GXψ ≥ 0, and the
interchange of integration order is permitted by Tonelli-Fubini’s Theorem. (ii) Suppose that X ≤ 0
a.e. Then, −GX ≥ 0 and −GXψ ≥ 0, and the interchange of integration order is again permitted by
Tonelli-Fubini’s Theorem. (iii) Suppose that neither (i) nor (ii) holds. Then, there exists a βX ∈ (0, 1)
such that GX(β) ≥ 0 for β ≥ βX and GX(β) ≤ 0 for β ≤ βX . In view of Proposition 2.3, it suffices to
find an integrable, lower-bounding function of GXψ. Let g : [0, 1)× (0, 1) → IR be given by

g(α, β) =


GX(β)/(1− βX) if 0 ≤ α < β ≤ βX

GX(β) if 0 ≤ α < β < 1, βX < β

0 otherwise.

Clearly, GXψ ≥ g and∫
|g|d(λ×m) ≤ 1

1− βX

∫
|GX |d(λ×m) =

1

1− βX

∫ 1

0

[∫ 1

0
|GX(β)|dβ

]
dλ(α), (6)

where the equality follows by Tonelli-Fubini’s Theorem. The inner integral simplifies to∫ 1

0
|GX(β)|dβ =

∫ 1

βX

GX(β)dβ −
∫ βX

0
GX(β)dβ = (1− βX)ḠX(βX)−

∫ βX

0
GX(β)dβ.
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The last term requires further simplification. Recall that for α ∈ (0, 1),

1

α

∫ α

0
GX(β)dβ = − 1

α

∫ 1

1−α
G−X(β)dβ = −Ḡ−X(1− α).

Applying this result, the inner integral from above simplifies further to∫ 1

0
|GX(β)|dβ = (1− βX)ḠX(βX) + βXḠ−X(1− βX) <∞.

Consequently in view of (6), g is integrable and therefore furnishes the necessary lower-bounding, inte-
grable function in Proposition 2.3, which completes part (iii). We are therefore permitted to interchange
the order of integration in (5) and get

R(X) =

∫ 1

0

[∫ 1

0
GX(β)ψ(α, β)dβ

]
dλ(α) =

∫ 1

0
GX(β)

[∫ 1

0
ψ(α, β) dλ(α)

]
dβ =

∫ 1

0
GX(β)φ(β)dβ,

where the last equality follows from the definition of φ.
The final assertions follow from recognizing that the Lebesgue-Stieltjes measure dφ associated with

a function φ has dφ(α) = 1
1−α dλ(α) for a weighting measure λ on [0, 1).

Second-order superquantiles possess the following properties.

3.4 Theorem (second-order superquantile properties) Any second-order superquantile risk measure
R̄α : L2 → IR, α ∈ [0, 1), is regular, monotonic, and positively homogenous, and satisfies for X ∈ L2

E[X] ≤ ¯̄GX(α) = R̄α(X) ≤ min

{
E[X] +

2σ(X)√
1− α

, supX

}
,

with the lower bound holding with strict inequality whenever X is nonconstant.
It has the alternative expressions

R̄α(X) =
1

1− α

∫ 1

α
GX(β) log

1− α

1− β
dβ =

∫ 1

0
GX(β)φ̄α(β)dβ,

with respect to the risk profile function

φ̄α(β) :=

{ 1
1−α log 1−α

1−β if α ≤ β < 1

0 if 0 ≤ β < α.

Moreover, φ̄α is a nondecreasing, finite convex function on [0, 1] with right-derivative equal to 1/(1−α)2
as it starts to grow from 0 at β = α.

Proof. As a special case of Theorem 3.3, it follows automatically that R̄α is well-defined, regular,
monotonic, positively homogeneous, and bounded from below by E[X]. From Proposition 2.2,

R̄α(X) ≤ 1

1− α

∫ 1

α
E[X] +

σ(X)√
1− β

dβ = E[X] +
σ(X)

1− α

∫ 1

α

1√
1− β

dλ(β) = E[X] +
2σ(X)√
1− α

.
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Obviously, R̄α(X) ≤ supX also holds.
The alternative expression follows after a specialization of φ of Theorem 3.3 for the given choice of

weighting measure λ = λ̄α. Specifically,

φ(β) =

∫
0≤γ<β

1

1− γ
dλ̄α(γ) = φ̄α(β) =

{ ∫ β
α

1
1−γ

1
1−αdγ if α ≤ β < 1

0 if 0 ≤ β ≤ α.

Since for 0 ≤ a ≤ b < 1, ∫ b

a

1

1− β
dβ = log

1− a

1− b
,

we therefore find that the alternative expressions follow.
The assertion about φ̄α being convex is justified by its derivative being zero for β ∈ (0, α) and

1/((1 − α)(1 − β)) for β ∈ (α, 1), with left- and right-derivatives at β = α equal to 0 and 1/(1 − α)2,
respectively.

The upper bounds on Rα and R̄α in Proposition 2.2 and Theorem 3.4, respectively, are remarkably
similar, and show that although second-order superquantile risks are larger than first-order risks, the
difference is at most σ(X)/

√
1− α.

4 Duality for Mixed Superquantile/CVaR Risk Measures

We next turn to the derivation of dual expressions for mixed and second-order superquantile risk
measures. We recall the dual relationship (see for example [19]) between a nonempty closed convex set
Q ⊂ L2, called a risk envelope, and a positively homogeneous, regular risk measure R through

R(X) = sup
Q∈Q

E[XQ] for X ∈ L2, Q = {Q ∈ L2 | E[XQ] ≤ R(X) for all X ∈ L2}.

An essential building block for such expressions in the case of mixed superquantile risk measures is the
dual expression for first-order superquantile risk measures, which we review first.

For α ∈ [0, 1), we recall that a first-order superquantile risk measure (see [20, 19]) has

Rα(X) = sup
Q∈Qα

E[XQ],

where the risk envelope is

Qα := {Q ∈ L2 | 0 ≤ Q(ω) ≤ 1/(1− α) a.e. ω ∈ Ω, E[Q] = 1}.

We also need the following definitions and technical results.

4.1 Definition Let (T,A, µ) be a complete measure space, with µ sigma-finite, X a separable reflexive
Banach space, and M a linear subspace of the linear space of all (A,BX )-measurable functions x :
T → X . The set M is (A,BX )-decomposable if, whenever x ∈ M and x0 : S → X is a bounded
(A,BX )-measurable function on a set S ∈ A, with µ(S) <∞, then the function y : T → X given by

y(t) =

{
x0(t) if t ∈ S

x(t) if t ∈ T \ S

also belongs to M.
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4.2 Definition In the notation of Definition 4.1, we say that a function f : T × X → (−∞,∞] is a
normal integrand if the following hold:

(i) f is (A⊗ BX )-measurable and

(ii) for every t ∈ T , f(t, ·) is lower semicontinuous on X and not identical to ∞.

4.3 Proposition Suppose that the conditions and notation of Definition 4.1 hold and f : T × X →
(−∞,∞] is a normal integrand. Then, the following hold:

(i) the functions t 7→ infξ∈X f(t, ξ) and t 7→ f(t, x(t)), with x : T → X (A,BX )-measurable, are
A-measurable and

(ii) if M is (A,BX )-decomposable and there exists an x ∈ M such that
∫
f(t, x(t) dµ(t) <∞, then

inf
x∈M

∫
f(t, x(t)) dµ(t) =

∫
φ(t) dµ(t), where φ(t) = inf

ξ∈X
f(t, ξ). (7)

Proof. First, we consider t 7→ infξ∈X f(t, ξ). For measurable spaces (X1,A1) and (X2,A2), we recall
that a set-valued mapping S : X1 ⇒ X2 is (A1,A2)-measurable if its graph is measurable in the sense
that

{(x1, x2) ∈ X1 ×X2 | x2 ∈ S(x1)} ∈ A1 ⊗A2,

where A1⊗A2 is the product sigma-algebra generated by A1 and A2. Since f is a normal integrand, the
set-valued mapping t 7→ epi f(t, ·) is A-measurable and closed-valued; see for example [22, Proposition
1]. By [22, Theorem 1(f)], there exists a countable collection {gi}i∈I of A-measurable functions gi :
T → X × IR of the form gi(t) = (xi(t), αi(t)), xi(t) ∈ X and αi(t) ∈ IR, such that

epi f(t, ·) = cl{gi(t)}i∈I for all t ∈ T,

where cl denotes closure. The mapping t 7→ αi(t) is also A-measurable. Consequently,

inf
ξ∈X

f(t, ξ) = inf
i∈I

αi(t) for all t ∈ T

and the conclusion follows from the fact that the pointwise infimum of a countable collection of mea-
surable functions is a measurable function.

Second, we consider t 7→ f(t, x(t)), which is a composition of f with the measurable mapping
t 7→ (t, x(t)) and therefore measurable.

Third, we establish part (ii) by following the arguments in the proof of Theorem 2 in [22]. By
assumption there exists a function x1 ∈ M and a µ-integrable function α1 : T → IR such that

f(t, x1(t)) ≤ α1(t) for every t ∈ T.

Since φ(t) ≤ f(t, x(t)) for every function x ∈ M and t ∈ T by definition and φ is A-measurable by
part (i), the integral of φ is well-defined and either finite or equals −∞. Consequently, the inequality
≥ holds in (7). Now, let γ ∈ IR be such that∫

φ(t) dµ(t) < γ. (8)
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We will prove the existence of a function x ∈ M such that∫
f(t, x(t)) dµ(t) < γ, (9)

thereby establishing part (ii). From (8) and the properties of (T,A, µ), there exists a µ-integrable
function α0 : T → IR such that φ(t) < α0(t) for every t ∈ T and∫

α0(t) dµ(t) < γ. (10)

We define the set-valued mapping S : T ⇒ X by

S(t) = {ξ ∈ X | f(t, ξ) ≤ α0(t)} for t ∈ T.

Since the function (t, ξ) 7→ f(t, ξ) − α0(t) is (A⊗ BX )-measurable, S is also A-measurable. Moreover,
S(t) is for each t ∈ T closed and nonempty. Since S is A-measurable, there exists a A-measurable
selection x0, i.e., a A-measurable function x0 such that x0(t) ∈ S(t) for every t ∈ T ; see for example the
corollary of Theorem 1 in [22]. Since (10) holds, there exists a measurable set T0 ⊂ T , with µ(T0) <∞,
such that ∫

T0

α0(t) dµ(t) +

∫
T\T0

α1(t) dµ(t) < γ. (11)

By the construction of S in terms of α0, the measurable selection x0 can be chosen to be bounded on
T0. Let x : T → X be such that x(t) = x0(t) for t ∈ T0 and x(t) = x1(t) for t ∈ T \T0. Then, x ∈ M by
the assumption of decomposability, and we have that f(t, x(t)) ≤ α0(t) for t ∈ T0 and f(t, x(t)) ≤ α1(t)
for t ∈ T \ T0. From (11) we then conclude (9), which establishes part (ii).

4.4 Lemma If q : [0, 1) → L2 is (B̄[0,1),BL2)-measurable, then

(i) the function f1 : [0, 1)× Ω → IR given by f1(β, ω) = q(β)(ω) is (B̄[0,1) ⊗F)-measurable, and

(ii) the function f2 : [0, 1) → IR given by f2(β) = ∥q(β)∥2 is B̄[0,1)-measurable.

Proof. For part (i) simply observe that f1 = g ◦ h, where h : [0, 1) × Ω → L2 × Ω, with h(α, ω) =
(q(α), ω), and g : L2×Ω → IR, with g(Q,ω) = Q(ω). The conclusion then follows from the measurability
of q and elements of L2, and the fact that composition of measurable functions is measurable. Next,
we consider part (ii). A trivial extension of part (i) establishes that the function (β, ω) 7→ [q(β)(ω)]2

is (B̄[0,1) ⊗ F)-measurable. Since it is also nonnegative, it follows from Tonelli-Fubini’s Theorem that
[f2(·)]2 is B̄[0,1)-measurable.

In preparation for returning to our application, we define a specific class of integrable mappings.
Let

M :=

{
q : [0, 1) → L2

∣∣∣∣ q (
B̄[0,1),BL2

)
-measurable,

∫
∥q(β)∥2 dλ(β) <∞

}
.

We note that M is well-defined because by Lemma 4.4, the mapping β 7→ ∥q(β)∥2 is B̄[0,1)-measurable
whenever q is (B̄[0,1),BL2)-measurable.

4.5 Proposition The set M is (B̄[0,1),BL2)-decomposable.
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Proof. This fact is a direct consequence of Definition 4.1.

We are now ready to return to the risk envelope of a mixed superquantile risk measure R and define
a collection of random variables in terms of (Bochner) integrals of elements of M. Let

Q := cl

{
Q ∈ L2

∣∣∣∣ Q =

∫
q(β) dλ(β), q ∈ M, q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1)

}
,

where cl denotes closure with respect to the (strong) topology on L2. We note that Q resembles the
Aumann integral (see for example [3]) of the set-valued mapping β 7→ Qβ.

4.6 Theorem (risk envelope for mixed superquantile) The set Q ⊂ L2 is nonempty, convex, and is the
risk envelope of R, i.e., for any X ∈ L2,

R(X) = sup
Q∈Q

E[XQ].

Moreover, whenever
∫
1/

√
1− α dλ(α) <∞, it is also weakly compact.

Proof. Let X ∈ L2 and f : [0, 1)× L2 → IR be defined by

f(α,Q) =

{
−E[XQ] if Q ∈ Qα

∞ otherwise.

In view of Definition 4.2, f is a normal integrand because (i) f is (B̄[0,1) ⊗BL2)-measurable as the sum
of the continuous4 function −E[X·] on [0, 1)× L2 and an indicator function vanishing on the set

{(β,Q) ∈ [0, 1)× L2 | Q ∈ Qβ} ∈ B̄[0,1) ⊗ BL2

and infinity elsewhere, (ii) f(β,Q) ≥ −E[XQ] > −∞ for β ∈ [0, 1) and Q ∈ L2, and (iii) for all
β ∈ [0, 1), f(β, ·) is lower semicontinuous by the continuity of E[X·] on L2 and the closedness of
Qβ ⊂ L2, and f(β, ·) is not identical to ∞ with Q = 1 ∈ Qβ furnishing a finite value f(β, 1) = −E[X].
In view of Proposition 4.5 and the fact that q = 1 provides an element of M with

∫
f(β, q(β)) dλ(β) =

−E[X] <∞, Proposition 4.3 applies. Consequently, the interchange of integration and minimization is
permitted and we obtain that

R(X) =

∫
sup

Qβ∈Qβ

E[XQβ] dλ(β) = −
∫

inf
Q∈L2

f(β,Q) dλ(β)

= − inf
q∈M

∫
f(β, q(β)) dλ(β).

We next consider the interchange of integration with respect to λ and P. For q ∈ M, it follows from
Lemma 4.4 that the function (β, ω) 7→ |X(ω)q(β)(ω)| is measurable. By Tonelli-Fubini’s Theorem and
Cauchy-Schwartz inequality,∫

|X(ω)q(β)(ω)|d(λ× P)(β, ω) =
∫
E[|Xq(β)|] dλ(β) ≤ ∥X∥2

∫
∥q(β)∥2 dλ(β) <∞,

4Here continuity is with respect to the product topology of the norm-topologies on [0, 1) and L2.
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where the finiteness follows by the property of q ∈ M. Then by Tonelli-Fubini’s Theorem,∫
E[Xq(β)] dλ(β) = E

[
X

∫
q(β) dλ(β)

]
.

Since ∫
f(β, q(β)) dλ(β) =

∫
E[Xq(β)] dλ(β)

whenever q ∈ M is such that q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1) and
∫
f(β, q(β)) dλ(β) = ∞ otherwise, we

find that

inf
q∈M

∫
f(β, q(β)) dλ(β) = inf

q∈M

{∫
E[−Xq(β)] dλ(β) + ι(q)

}
= inf

q∈M

{
−E

[
X

∫
q(β) dλ(β)

]
+ ι(q)

}
,

where

ι(q) =

{
0 if q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1)

∞ otherwise.

Compiling the above results, we see that

R(X) = − inf
q∈M

∫
f(β, q(β)) dλ(β) = sup

q∈M

{
E

[
X

∫
q(β) dλ(β)

]
− ι(q)

}
= sup

Q∈Q
E[XQ].

The convexity of Q follows from the convexity of Qβ. Since 1 ∈ Q, Q is not empty. Under the
additional assumption that

∫
1/

√
1− α dλ(α) <∞, R is finite-valued on L2 and even locally bounded

around the origin of L2 by Theorem 3.3. This local boundedness for a positively homogeneous convex
function, as the support function of a set Q, corresponds to that set being bounded. Consequently,
Q is bounded. Since Q is convex, weak closedness follows from strong closedness and therefore weak
compactness is established.

For the special case of a second-order superquantile risk measure we then obtain the following
corollary.

4.7 Corollary For α ∈ [0, 1), the risk envelope of R̄α is given by

Q̄α := cl

{
Q ∈ L2

∣∣∣∣ Q =
1

1− α

∫ 1

α
q(β)dβ, q ∈ M, q(β) ∈ Qβ for m-a.e. β ∈ [α, 1)

}
.

Moreover, Q̄α is a nonempty weakly-compact convex subset of L2.

In addition to the trivial cases when λ and/or P are positive only on a finite number of points in
[0, 1) and Ω, respectively, the closure in the definition of Q (and Q̄α) is unnecessary under the following
condition.

4.8 Proposition Suppose that λ is nonatomic and
∫
1/(1− α) dλ(α) <∞. Then,

Q =

{
Q ∈ L2

∣∣∣∣ Q =

∫
q(β) dλ(β), q ∈ M, q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1)

}
.
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Proof. By [4], an integrably bounded B̄[0,1)-measurable set-valued mapping S : [0, 1) ⇒ L2, with closed
and convex values, satisfies

cl

{∫
S(α) dλ(α)

}
=

∫
S(α) dλ(α)

when λ is nonatomic. Take S to be the mapping α 7→ {q(α) | q ∈ M, q(α) ∈ Qα}, which obviously is
closed and convex valued by the properties of Qα. Moreover, since both [0, 1) and L2 are separable,
there exists a countable collection {qi}∞i=1, q

i ∈ M, such that S(α) = cl{qi(α) | i = 1, 2, ...} for λ-a.e.
α ∈ [0, 1). Thus, S is B̄[0,1)-measurable; see for example [22, Theorem 1]. The mapping S is integrably
bounded if there exists a B̄[0,1)-measurable g : [0, 1) → IR with

∫
g(α) dλ(α) <∞ and

sup
Q∈S(α)

∥Q∥2 ≤ g(α) for λ-a.e. α ∈ [0, 1).

Since for our choice of S we have that every Q ∈ S(α) has Q(ω) ≤ 1/(1− α) for a.e. ω ∈ Ω, integrably
boundedness holds with g(α) = 1/(1− α) under the imposed restriction on λ.

Next, we turn to specific expressions for risk identifiers. Recall that for any X ∈ L2 and positively
homogeneous regular measure of risk on L2, a Q in the risk envelope of the risk measure that maxi-
mizes E[XQ] is called a risk identifier at X. We again start with the building blocks from first-order
superquantile risk measures.

For X ∈ L2, the set
QX

α := argmax
Q∈Qα

E[XQ]

is convex and nonempty with its elements referred to as risk identifiers of Rα. Before we characterize
these risk identifiers, we introduce additional notation.

For β ∈ (0, 1), let
Ωβ(X) := {ω ∈ Ω | X(ω) = GX(β)}

and let
F−
X (x) := lim

x′ ↗x
FX(x′), x ∈ IR

be the left-continuous “companion” of the cumulative distribution function FX , where the limit exists
by the virtue of FX being nondecreasing and bounded from above. For FX continuous, FX = F−

X of
course.

The risk identifiers of Rα are then characterized as follows; see also [25, Equation 4.21] for closely
related expressions.

4.9 Proposition For X ∈ L2 and β ∈ (0, 1), let rXβ ∈ L2 be such that

0 ≤ rXβ (ω) ≤ 1

1− β
for a.e. ω ∈ Ω and

∫
Ωβ(X)

rXβ (ω)dP(ω) =
FX(GX(β))− β

1− β
. (12)
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Every such rXβ , defines a unique5 Q
X,rXβ
β ∈ L2 given for a.e. ω ∈ Ω by

Q
X,rXβ
β (ω) :=


1

1−β if X(ω) > GX(β)

rXβ (ω) if X(ω) = GX(β) and P({ω}) > 0

0 otherwise.

(13)

Then,

QX
β =

{
Q ∈ L2

∣∣∣∣ Q = Q
X,rXβ
β for some rXβ ∈ L2 satisfying (12)

}
.

Moreover,
QX

0 = {Q ∈ L2 | Q(ω) = 1 for a.e. ω ∈ Ω}.

Proof. Let β ∈ (0, 1) and X ∈ L2. We first show that there exists an rXβ ∈ L2 satisfying (12). For

ω ∈ Ω satisfying X(ω) = GX(β) and P({ω}) > 0, F−
X (X(ω)) ≤ β ≤ FX(X(ω)), with at least one of the

inequalities being strict, and

FX(X(ω))− β

(1− β)(FX(X(ω))− F−
X (X(ω)))

∈ [0, 1/(1− β)].

Let r̂Xβ ∈ L2 be defined for a.e. ω ∈ Ω by

r̂Xβ (ω) :=

{
FX(X(ω))−β

(1−β)(FX(X(ω))−F−
X (X(ω)))

, if X(ω) = GX(β) and P({ω}) > 0

0 otherwise.
(14)

Clearly, r̂Xβ satisfies 0 ≤ r̂Xβ (ω) ≤ 1/(1− β) for a.e. ω ∈ Ω. Moreover,∫
Ωβ(X)

r̂Xβ (ω)dP(ω) =
∫
Ωβ(X)

FX(GX(β))− β

(1− β)(FX(GX(β))− F−
X (GX(β)))

dP(ω) =
FX(GX(β))− β

1− β

and r̂Xβ therefore satisfies (12).

Let rXβ ∈ L2 satisfy (12). Since 0 ≤ Q
X,rXβ
β (ω) ≤ 1/(1− β) for a.e. ω ∈ Ω and∫

Q
X,rXβ
β (ω)dP(ω) =

∫
{ω∈Ω | X(ω)>GX(β)}

1

1− β
dP(ω) +

∫
Ωβ(X)

rXβ (ω)dP(ω)

=
1− FX(GX(β))

1− β
+
FX(GX(β))− β

1− β
= 1,

5With L2 consisting of equivalence classes of functions identical up to on a set of P-measure zero, uniqueness of course
is in the sense of such equivalence classes.
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we find that Q
X,rXβ
β ∈ Qβ. Moreover,

E

[
XQ

X,rXβ
β

]
=

∫
{ω∈Ω | X(ω)>GX(β)}

X(ω)

1− β
dP(ω) +

∫
Ωβ(X)

X(ω)rXβ (ω)dP(ω)

=
1

1− β

∫
{ω∈Ω | X(ω)>GX(β)}

X(ω)dP(ω) +GX(β)
FX(GX(β))− β

1− β

=

∫ ∞

−∞
xdF β

X(x)

in the notation of (2) and therefore coincides with the alternative expression for ḠX(β), which proves

that Q
X,rXβ
β maximizes E[X·] over Qβ. Any Q ∈ Qβ not equal to Q

X,rXβ
β for any rXβ must necessarily

have E[XQ] < ḠX(β).
The case of β = 0 follows also as then Q0 = {Q ∈ L2 | 0 ≤ Q(ω) ≤ 1 for a.e. ω ∈ Ω, E[Q] = 1}.

A particular element of QX
β plays a central role in the following. Let r̂Xβ ∈ L2 be as defined in (14).

Consequently by Proposition 4.9, Q̂X
β defined for a.e. ω ∈ Ω by

Q̂X
β (ω) :=


1

1−β if X(ω) > GX(β)

r̂Xβ (ω) if X(ω) = GX(β) and P({ω}) > 0

0 otherwise

(15)

is a point in QX
β . Moreover, let Q̂X

0 ∈ L2 be defined by Q̂X
0 (ω) = 1 for a.e. ω ∈ Ω, which therefore by

Proposition 4.9 is a point in QX
0 . The random variable Q̂X

β behaves continuously in β in a sense given
next.

4.10 Proposition If βν , β ∈ [0, 1) and βν → β, then for any X ∈ L2, ∥Q̂X
βν − Q̂X

β ∥2 → 0.

Proof. Let X ∈ L2 and r̂Xβ be defined in (14) and β ∈ (0, 1). Suppose that FX(GX(β))−F−
X (GX(β)) >

0. We consider two cases.
First, suppose that βν → β, with βν < β for all ν, which implies that β ∈ [F−

X (GX(β)), FX(GX(β))].
If β ∈ (F−

X (GX(β)), FX(GX(β))], then GX(βν) = GX(β) for sufficiently large ν. Consequently, for
sufficiently large ν,

∥Q̂X
βν − Q̂X

β ∥22 =
∫
{ω|X(ω)<GX(β)}

(0− 0)2dP(ω)

+

∫
Ωβ(X)

(r̂Xβν (ω)− r̂Xβ (ω))2dP(ω) +
∫
{ω|X(ω)>GX(β)}

(
1

1− βν
− 1

1− β

)2

dP(ω).

When X(ω) = GX(βν) = GX(β),

r̂Xβν (ω)− r̂Xβ (ω) =
FX(GX(β))− βν

(1− βν)(FX(GX(β))− F−
X (GX(β)))

− FX(GX(β))− β

(1− β)(FX(GX(β))− F−
X (GX(β)))
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Hence, all three terms in the above integral vanish as ν → ∞. If β = F−
X (GX(β)), then we only have that

GX(βν)↗GX(β) by the left-continuity of GX and in fact GX(βν) < GX(β)) for all ν. Consequently,

∥Q̂X
βν − Q̂X

β ∥22 =
∫
{ω|X(ω)<GX(βν)}

(0− 0)2dP(ω)

+

∫
{ω|GX(βν)=X(ω)<GX(β)}

(r̂Xβν (ω)− 0)2dP(ω)

+

∫
{ω|GX(βν)<X(ω)=GX(β)}

(
1

1− βν
− r̂Xβ (ω)

)2

dP(ω)

+

∫
{ω|GX(βν)<GX(β)<X(ω)}

(
1

1− βν
− 1

1− β

)2

dP(ω).

Of the four integrals, the first and fourth ones obviously tend to zero. For the second one, we see that

P({ω|GX(βν) < X(ω) = GX(β)}) = FX(GX(βν))− F−
X (GX(βν)) ≤ FX(GX(β))− F−

X (GX(βν)) → 0

by the left-continuity of F−
X and consequently the integral also tends to zero. For the third integral, we

find that when X(ω) = GX(β)

r̂Xβ (ω) =
FX(GX(β))− β

(1− β)(FX(GX(β))− F−
X (GX(β)))

=
FX(GX(β))− F−

X (GX(β))

(1− β)(FX(GX(β))− F−
X (GX(β)))

=
1

1− β
.

Consequently, the third integral also tends to zero.
Second, suppose that βν → β, with βν > β for all ν. If β ∈ [F−

X (GX(β)), FX(GX(β))), then
GX(βν) = GX(β) for sufficiently large ν and the corresponding argument for the first case still holds.
If β = FX(GX(β)), then we only have that GX(βν) > GX(β)) for all ν. Consequently,

∥Q̂X
βν − Q̂X

β ∥22 =
∫
{ω|X(ω)<GX(β)}

(0− 0)2dP(ω)

+

∫
{ω|GX(β)=X(ω)<GX(βν)}

(0− r̂Xβ (ω))2dP(ω)

+

∫
{ω|GX(β)<X(ω)=GX(βν)}

(
r̂Xβν (ω)−

1

1− β

)2

dP(ω)

+

∫
{ω|GX(β)<GX(βν)<X(ω)}

(
1

1− βν
− 1

1− β

)2

dP(ω).

The first and fourth integrals obviously tend to zero. For the second one,

r̂Xβ (ω) =
FX(GX(β))− β

(1− β)(FX(GX(β))− F−
X (GX(β)))

=
FX(GX(β))− FX(GX(β))

(1− β)(FX(GX(β))− F−
X (GX(β)))

= 0

and consequently a zero integral. For the third integral,

r̂Xβν (ω) =
FX(GX(βν))− βν

(1− βν)(FX(GX(βν))− F−
X (GX(βν)))

→ 1

1− β
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if GX(βν) remains bounded away from GX(β) because then F−
X (βν) → FX(β) = β. If GX(βν) →

GX(β), then by the right-continuity of FX we have that

P({ω ∈ Ω|GX(β) < X(ω) = GX(βν)}) = FX(GX(βν))−F−
X (GX(βν)) ≤ FX(GX(βν))−FX(GX(β)) → 0.

Consequently, the third integral also tends to zero.
The situation with FX(GX(β)) − F−

X (GX(β)) = 0 follows with similar and in fact simplified argu-
ments as in that case FX is continuous at GX(β) and GX is continuous at β.

Finally, we consider the case with β = 0 and βν ↘0. Then,

∥Q̂βν − Q̂0∥22 =
∫
{ω|X(ω)>GX(βν)}

(
1

1− βν
− 1

)2

dP(ω)

=

∫
Ωβν (X)

(r̂βν (ω)− 1)2dP(ω) +
∫
{ω|X(ω)<GX(βν)}

(0− 1)2dP(ω).

Since 1/(1 − βν) → 1, the first integral vanishes. The last two integrals vanish since their integrands
are bounded and FX(GX(βν)) → 0.

We are then in a position to characterize risk identifiers of mixed superquantile risk measures. For
X ∈ L2, let

QX := cl

{
Q ∈ L2

∣∣∣∣ Q =

∫
q(β) dλ(β), q ∈ M, q(β) ∈ QX

β for λ-a.e. β ∈ [0, 1)

}
. (16)

4.11 Theorem (risk identifiers for mixed superquantiles) For X ∈ L2, the set QX is convex and
satisfies the following.

(i) If Q ∈ QX , then Q is a risk identifier of R at X.

(ii) If
∫
1/

√
1− β dλ(β) < ∞, then QX is nonempty and weakly compact, and Q ∈ QX whenever Q

is a risk identifier of R at X. Moreover, Q̂ :=
∫
q̂(β) dλ(β), where

q̂ : [0, 1) → L2, with q̂(β) = Q̂X
β (defined in (15)) for all β ∈ [0, 1),

is furnishing an element of QX .

Proof. We first consider (i). Let Q ∈ QX . There exists sequences {Qν}∞ν=1 ⊂ L2 and {qν}∞ν=1 ⊂ M
such that ∥Qν −Q∥2 → 0, Qν =

∫
qν(β) dλ(β), and qν(β) ∈ QX

β for all ν and λ-a.e. β ∈ [0, 1). Then,
for every ν,

R(X) =

∫
E[Xqν(β)] dλ(β) = E

[
X

∫
qν(β) dλ(β)

]
= E[XQν ],

where the middle equality follows by the argument as in the proof of Theorem 4.6. Since by the
Cauchy-Schwartz inequality E[XQν ] → E[XQ], we also have that R(X) = E[XQ], which establishes
(i).

Next, we consider (ii). Suppose that
∫
1/

√
1− β dλ(β) < ∞. We proceed toward a contradiction.

Suppose that Q ∈ Q is a risk identifier of R at X, but Q ̸∈ QX . Then there must exists a q ∈ M and
B ∈ B̄[0,1) such that q(β) ∈ Qβ for λ-a.e. β ∈ [0, 1), λ(B) > 0, and q(β) ̸∈ QX

β for all β ∈ B. However,
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this implies that E[Xq(β)] < E[XQX
β ] for all β ∈ B and any QX

β ∈ QX
β . Consequently, E[XQ] < R(X),

which is a contradiction.
Since Q is weakly compact by Theorem 4.6, the weak compactness of QX follows from it being a

closed convex subset of Q. Finally, we show that Q̂ ∈ QX . The conclusion follows when we have shown
that q̂ ∈ M. By Proposition 4.10, q̂ is continuous and therefore (B̄[0,1),BL2)-measurable. Since for
β ∈ (0, 1)

∥Q̂X
β ∥22 =

∫
{ω∈Ω | X(ω)>GX(β)}

1

(1− β)2
dP(ω) +

∫
Ωβ(X)

[
FX(GX(β))− β

(1− β)(FX(GX(β))− F−
X (GX(β)))

]2
dP(ω)

=
1− β

(1− β)2
+

[
FX(GX(β))− β

(1− β)(FX(GX(β))− F−
X (GX(β)))

]2
(FX(GX(β))− F−

X (GX(β)))

=
1

1− β
+

(FX(GX(β))− β)2

(1− β)2(FX(GX(β))− F−
X (GX(β)))

≤ 1

1− β
+

(1− β)(FX(GX(β))− β)

(1− β)2(FX(GX(β))− F−
X (GX(β)))

≤ 1

1− β
+

FX(GX(β))− F−
X (GX(β))

(1− β)(FX(GX(β))− F−
X (GX(β)))

=
2

1− β

and ∥Q̂X
0 ∥22 = 1, we find that∫

∥q̂(β)∥2 dλ(β) ≤
√
2

∫
1√

1− β
dλ(β) <∞.

Consequently q̂ ∈ M and Q̂ =
∫
q̂(β) dλ(β) ∈ QX , which complete the proof.

We observe that when
∫
1/

√
1− β dλ(β) = ∞, there are random variables X ∈ L2 with R(X) = ∞.

In this case it might not be necessary to select q in (16) with q(β) ∈ QX
β for λ-a.e. β ∈ [0, 1) because∫

E[Xq(β)] dλ(β) might still be infinity. For the special case of a second-order superquantile risk
measure, we directly obtain the following corollary without this complication.

4.12 Corollary For α ∈ [0, 1) and X ∈ L2, the set

Q̄X
α := cl

{
Q ∈ L2

∣∣∣∣ Q =
1

1− α

∫ 1

α
q(β)dβ, q ∈ M, q(β) ∈ QX

β for m-a.e. β ∈ [α, 1)

}
is nonempty, convex, and weakly compact. Moreover,

Q ∈ Q̄X
α if and only if Q is a risk identifier of Rα at X.

Further simplifications are possible in the case of second-order superquantile risk measures. As
usual, we interpret 0 times −∞ as zero in the following.

19



4.13 Theorem (further characterization of second-order superquantile risk identifiers) For X ∈ L2

and α ∈ [0, 1), Q̄X
α is the closure of elements Q̄X

α ∈ Q̄α given, for a.e. ω ∈ Ω, by

Q̄X
α (ω) =


1

1−α

[
log 1−α

1−f(ω) +
∫ F (ω)
f(ω) r

X
β (ω)dβ

]
if α < f(ω) < 1

1
1−α

∫ F (ω)
α rXβ (ω)dβ if f(ω) ≤ α ≤ F (ω)

0 otherwise,

where rXβ ∈ L2 satisfies (12) and F (ω) := FX(X(ω)) and f(ω) := F−
X (X(ω)).

The specific choice r̂Xβ ∈ L2 given in (14) results in the risk identifier Q̄X
α ∈ Q̄X

α having, for a.e.
ω ∈ Ω,

Q̄X
α (ω) =



1
1−α log 1−α

1−F (ω) if α < f(ω) = F (ω) < 1

1
1−α

[
log 1−α

1−f(ω) + 1 + 1−F (ω)
F (ω)−f(ω) log

1−F (ω)
1−f(ω)

]
if α < f(ω) < F (ω)

1
1−α

[
F (ω)−α

F (ω)−f(ω) +
1−F (ω)

F (ω)−f(ω) log
1−F (ω)
1−α

]
if f(ω) ≤ α ≤ F (ω) and f(ω) < F (ω)

0 otherwise.

Proof. For ω ∈ Ω such that α < F−
X (X(ω)) < 1,∫

{β∈(α,1) | X(ω)>GX(β)}

1

1− β
dβ = [− log(1− β)]

F−
X (X(ω))

α = log
1− α

1− F−
X (X(ω))

. (17)

By Proposition 4.9,

Q̄X
α (ω) =

1

1− α

[∫
{β∈(α,1) | X(ω)>GX(β)}

1

1− β
dβ +

∫
{β∈(α,1) | X(ω)=GX(β)}

rXβ (ω)dβ

]

=
1

1− α

[
log

1− α

1− F−
X (X(ω))

+

∫ FX(X(ω))

F−
X (X(ω))

rXβ (ω)dβ

]
,

which proves the first claim. The second claim follows by a similar argument.
We next turn to the specific choice of r̂Xβ . For α < F−

X (X(ω)) = FX(X(ω)) < 1, the conclusion

follows trivially. For α < F−
X (X(ω)) < FX(X(ω)), integration gives that∫ FX(X(ω))

F−
X (X(ω))

r̂Xβ (ω)dβ =

∫ FX(X(ω))

F−
X (X(ω))

FX(X(ω))− β

(1− β)(FX(X(ω))− F−
X (X(ω)))

dβ

= 1 +
1− FX(X(ω))

FX(X(ω))− F−
X (X(ω))

log
1− FX(X(ω))

1− F−
X (X(ω))

,

and the corresponding conclusion follows. The last case follows by a similar calculation.

The situation is especially simple for the following case.

4.14 Corollary Suppose that FX is continuous for X ∈ L2 and α ∈ [0, 1). Then, Q̄X
α is a singleton6

with element given, for a.e. ω ∈ Ω, by

Q̄X
α (ω) =

{
1

1−α log 1−α
1−FX(X(ω)) if α < FX(X(ω)) < 1

0 otherwise.

6Again, uniqueness is up to on a set of P-measure zero.
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It is obvious that expressions of risk identifiers provide alternative expressions for risk measures.
Specifically, for X ∈ L2,

R(X) = sup
Q∈Q

∫
X(ω)Q(ω)dP (ω) =

∫
X(ω)QX(ω)dP (ω),

for any QX ∈ QX . In the case of the previous corollary, it is easy to see that the second-order
superquantile risk takes the simple form

R̄α(X) =
1

1− α

∫ ∞

GX(α)
x log

1− α

1− FX(x)
dFX(x),

where GX(α) = −∞ for α = 0, which complements the expression of Theorem 3.4.

5 Applications to Optimization and Regression

In applications arising in optimization under uncertainty and risk-averse regression, one is not only
interested in the risk of a single random variable X, but rather of a parameterized family of random
variables over which the “best” is to be selected according to some criterion and constraints. When
the criterion and/or the constraints are given in terms of measures of risk applied to this family of
random variables, we obtain optimization problems involving parameterized risk. Properties of these
measures of risk as functions of the parameters as well as formulae for the functions’ (sub)gradients
become central. In this section, we discuss optimization problems involving parameterized mixed and
second-order superquantile risk. In particular, we develop expressions for subgradients relying on the
risk identifiers of Section 4.

We consider a family of random variables Xu = g(u, ·), u ∈ IRn, generated by the function g :
IRn × Ω → IR. Consistent with the previous sections, we assume that Xu ∈ L2 for all u ∈ IRn. For a
weighting measure λ and the corresponding mixed superquantile risk measure R, as before given by

R(Xu) =

∫
ḠXu(β) dλ(β),

we get a function
f(u) := R(Xu), u ∈ IRn, (18)

representing parameterized risk. One might then proceed with determining a u ∈ IRn that

minimizes f(u) over a subset of IRn

or, alternatively, with determining a u ∈ IRn that

minimizes some criterion function of u subject to f(u) ≤ 0 and possibly other constraints.

Algorithms such as cutting plane and bundle methods for solving these optimization problems require
expressions for (sub)gradients of f . Justification for these approaches is provided by the Convexity
Theorem of [19], which establishes that f is convex whenever g(·, ω) is convex for a.e. ω ∈ Ω.
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In the remainder of the paper, we derive expressions for subgradients of f , but refrain from discussing
full algorithms; see for example [12, 10, 24] for risk minimization algorithms based on dual approaches
and [25] for related subgradient expressions. However, we end the paper with a discussion of primal
and dual methods in the context of superquantile regression.

5.1 Subgradients of Parameterized Risk

We restrict the attention to the case with
∫
1/

√
1− α dλ(α) <∞ which ensures the finiteness of R on

L2 and also the weak compactness of Q. We equip IRn × L2 with the product topology generated by
the norm topology on IRn and the weak topology on L2. The convergence of points in IRn ×L2 in this
weak sense is denoted by →w.

For notational convenience, we let h : IRn × L2 → IR be given by

h(u,Q) :=

∫
g(u, ω)Q(ω)dP(ω). (19)

Properties of this function are established next.

5.1 Proposition Consider h in (19) and suppose for an open set U ⊂ IRn that

(i) there exists an L ∈ L2 such that

|g(u, ω)− g(u′, ω)| ≤ L(ω)∥u− u′∥ for all u, u′ ∈ U and a.e. ω ∈ Ω

(ii) for every i = 1, ..., n, there exists an Ωi ⊂ Ω, with P{Ωi} = 1, and an Li ∈ L2 such that
∂g(u, ω)/∂ui exists for u ∈ U and ω ∈ Ωi, and∣∣∣∣∂g(u, ω)∂ui

− ∂g(u′, ω)

∂ui

∣∣∣∣ ≤ Li(ω)∥u− u′∥ for all u, u′ ∈ U and ω ∈ Ωi

(iii) g(v, ·), ∂g(vi, ·)/∂ui ∈ L2 for some v, vi ∈ U , i = 1, ..., n.

Then, h is weakly continuous on U × L2 and ∇uh exists and is likewise weakly continuous on U × L2.

Proof. First we consider h, which is well-defined and finite on U × L2 from assumptions (i) and
(iii). Suppose that (uν , Qν) →w (u,Q), with uν , u ∈ U and Qν , Q ∈ L2. Then by the triangle and
Cauchy-Schwartz inequalities and assumption (i),

|h(uν , Qν)− h(u,Q)| ≤
∣∣∣∣∫ [g(uν , ω)− g(u, ω)]Qν(ω)dP(ω)

∣∣∣∣+ ∣∣∣∣∫ g(u, ω)[Qν(ω)−Q(ω)]dP(ω)
∣∣∣∣

≤ ∥g(uν , ·)− g(u, ·)∥2∥Qν∥2 +
∣∣∣∣∫ g(u, ω)[Qν(ω)−Q(ω)]dP(ω)

∣∣∣∣
≤ (E[L2])1/2∥uν − u∥∥Qν∥2 +

∣∣∣∣∫ g(u, ω)[Qν(ω)−Q(ω)]dP(ω)
∣∣∣∣ .

By the Uniform Boundedness Principle, {∥Qν∥2}∞ν=1 is bounded and the first term therefore vanishes.
Since assumptions (i) and (iii) imply that g(u, ω) ∈ L2 for all u ∈ U , the second term vanishes by the
weak convergence of Qν to Q.
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Second we consider ∇uh. Following a standard argument and the Dominated Convergence Theorem
(see for example the proof of Theorem 7.44 in [27]), we find that for every u ∈ U and Q ∈ L2, ∇uh(u,Q)
exists and is given by

∇uh(u,Q) =

∫
∇ug(u, ω)Q(ω)dP(ω).

Repeating the above argument with g replaced by ∂g/∂ui and assumption (i) by assumption (ii) estab-
lishes the claim about ∇uh.

In view of Proposition 5.1, the following conclusions is a direct consequence of [23, Theorem 10.31].

5.2 Theorem (subdifferentiability of f) Suppose that the assumptions of Proposition 5.1 holds. Then,
f in (18) is locally Lipschitz continuous on U and strictly differentiable7 where it is differentiable. There
exists a set D ⊂ U such that U \ D is negligible8, f is differentiable on D, and the gradient ∇f is
continuous relative to the set D.

Moreover, the directional derivative of f at u ∈ U in direction v ∈ IRn is

df(u)(v) = max
{
⟨E [∇ug(u, ·)Q] , v⟩

∣∣∣ Q ∈ Qg(u,·)
}

and the subdifferential of f at u ∈ U is

∂f(u) = con
{
E [∇ug(u, ·)Q]

∣∣∣ Q ∈ Qg(u,·)
}
,

where Qg(u,·) is given in (16) with X replaced by g(u, ·).

We observe that when λ = λ̄α, i.e., the focus is on a second-order superquantile risk measure
R̄α, then Qg(u,·) is fully characterized by Theorem 4.13. In particular, the latter half of that theorem
provides a specific risk identifier Q ∈ Qg(u,·) that is easily calculated when Ω has finite cardinality. Such
a risk identifier then provides the subgradient E[∇ug(u, ·)Q] of f , which also is easily calculated in this
case.

5.2 Application to Superquantile Regression

Superquantile regression as laid out in [16] (see also [14]) resembles quantile regression, but instead of
estimating conditional quantiles, it focuses on conditional superquantiles. Specifically, we find that for
Y ∈ L2 and α ∈ (0, 1),{

ḠY (α)
}
= argmin

u0∈IR
Ēα(Y − u0), where Ēα(Y ) := V̄α(Y )− E[Y ]

7Recall that f : IRn → IR is strictly differentiable at a point x̄ if f(x̄) is finite and there is a vector v ∈ IRn such that
(f(x′)− f(x)− ⟨v, x′ − x⟩)/|x′ − x| → 0 whenever x, x′ → x̄ and x′ ̸= x; see [23, Definition 9.17].

8A subset of a set of Lebesgue measure zero is negligible.
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is a measure of error given in terms of the measure of regret 9

V̄α(Y ) :=
1

1− α

1∫
0

max{0, ḠY (β)}dβ.

In the same manner as minimizing mean-squared error yields an expectation and the foundation for
least-squares regression, and minimizing a Koenker-Basset error yields a quantile and the foundation
for quantile regression, minimizing Ēα leads to superquantile regression.

Superquantile regression deals with the problem of approximating a random variable Y ∈ L2 by a
combination of more accessible random variables X1, X2, ..., Xn ∈ L2, such that the error as quantified
by Ēα is minimized. Hopefully, the knowledge of X = (X1, ..., Xn) would then provide reasonably
accurate predictions of Y . Limiting the scope to affine regression functions, superquantile regression
then needs to solve the problem

min
u0∈IR,u∈IRn

Ēα (Y − [u0 + ⟨u,X⟩])

to obtain regression coefficients u0 and u. That is, the regression coefficients (u0, u) are selected such
that the error between Y and the model u0 + ⟨u,X⟩ is minimized.

We show in [16] that this problem can be decomposed into the two problems

(i) find û ∈ argmin
u∈IRn

1

1− α

∫ 1

α
Ḡg(u,·)(β)dβ − E[g(u, ·)] and (ii) find û0 = Ḡg(û,·)(α),

where for each u ∈ IRn,
g(u, ·) = Y − ⟨u,X⟩

is a random variable defined on the sample space Ω = IRn+1, with sigma-algebra BIRn+1 , and probability
P given by the distribution of (X,Y ). The problem (i) is that of minimizing a second-order superquantile
of g(u, ·) minus the expectation of g(u, ·). Since E[g(u, ·)] = E[Y ]−⟨u,E[X]⟩ is a deterministic quantity,
this problem is essentially in the form discussed earlier in the section: to minimize a mixed superquantile
risk measure, in fact a second-order superquantile risk measure.

Suppose that the distribution P is supported on the points {(xj , yj)}νj=1 ⊂ IRn+1 with P{(xj , yj)} =

pj , j = 1, ..., ν, as is the case in practice when the regression relies on the observed data {(xj , yj)}νj=1.
Then, the evaluation at a given u ∈ IRn of the objective function

f(u) =
1

1− α

∫ 1

α
Ḡg(u,·)(β)dβ −E[g(u, ·)]

of problem (i) and a corresponding subgradient are achieved as follows: Determine the cumulative
distribution function of g(u, ·) and use the formula in the second half of Theorem 4.13, with X replaced

by g(u, ·), to determine a risk identifier Q̄
g(u,·)
α . This computation can be obtained in O(ν log ν) time,

with sorting of {yj − ⟨u, xj⟩}νj=1 to obtain the cumulative distribution function being the bottleneck.
Then, in view of Theorem 5.2, the function value and a subgradient are readily available through

f(u) =
ν∑

j=1

pj(yj − ⟨u, xj⟩)Q̄g(u,·)
α (ωj)−

ν∑
j=1

pj(yj − ⟨u, xj⟩)

9We refer to [19] for a general treatment of measures of error and regret.
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and

∇f(u) =
ν∑

j=1

−pjxjQ̄g(u,·)
α (ωj) +

ν∑
j=1

pjxj , where ωj = (xj , yj).

We note that the assumptions of Proposition 5.1 are easily verified in this case due, in part, to the
affine form of g(·, ω). Consequently, each iteration of a cutting-plane method or bundle method requires
therefore computational time of order O(ν log ν) as a function of the number of data points. The number
of iterations needed would depend on the method, n (the number of explanatory variables), and other
factors. In comparison, a “primal” method proposed in [16] for solving the same problem requires the
solution of a linear program with n+O(ν2) variables and O(ν2) inequality constraints. It is therefore
clear that for small n and large ν, which is typical in regression problems, a dual method relying on the
expressions derived in this paper might outperform the linear-programming-based approach. In fact,
even storage of the linear program becomes challenging for large ν.
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